

Daily Tutorial Sheet 6 Level - 2

76.(B) $KCl \cdot MgCl_2 \cdot 6H_2O$ is carnallite.

77. [A-r] [B-q, r, s] [C-p, s] [D-p, q]

 $Ca \rightarrow exist in its carbonate form$

 $Zn \rightarrow exist$ in its sulphide, carbonate & oxide forms

 $Cr \rightarrow exist in its native form; oxide form$

 $Ag \rightarrow exist in its native form; sulphide form$

78. [A-r] [B-s] [C-t] [D-q] [E-p]

 $Al \rightarrow Na_3AlF_6$

 $Cu \rightarrow CuCO_3 \cdot Cu(OH)_2$ [Malachite]

 $Mg \rightarrow KCl \cdot MgCl_2 \cdot 6H_2O$ [Carnallite]

 $Zn \rightarrow ZnCO_3$ [Calamine]

 $Hg \rightarrow HgS$ [Cinnabar]

79.(B) \rightarrow All ores are minerals but all minerals are not ores.

- \rightarrow Impurity + flux = slag
- ightarrow Zone refining is done to obtain highly pure metals
- → Carnallite is an use of K and Mg

80.(B) KCl (sylvine); Malachite
$$(2CuCO_3 \cdot Cu(OH)_2)$$
; Cinnabar (HgS); Flourspar (CaF₂).

81.(D) Copper pyrite $[Cu_2S]$; Fool's gold $[FeS_2]$

82.(B)
$$ZnS + PbS \xrightarrow{+4NaCN} Na_2[Zn(CN)_4](aq) + PbS(s) + Na_2S(aq.)$$

83.(D)
$$Ag(s) \xrightarrow{\text{(i) NaCN}} [Ag(CN)_2]^{-1} (aq)$$

- 84.(B) Leaching is used for concentration of various ores of Ag, Al and Au.
- **85.(D)** Hot air has no use in the froth-floatation process